ERD-MedLDA: Entity relation detection using supervised topic models with maximum margin learning
نویسندگان
چکیده
This paper proposes a novel application of topic models to do entity relation detection (ERD). In order to make use of the latent semantics of text, we formulate the task of relation detection as a topic modeling problem. The motivation is to find underlying topics that are indicative of relations between named entities (NEs). Our approach considers pairs of NEs and features associated with them as mini documents, and aims to utilize the underlying topic distributions as indicators for the types of relations that may exist between the NE pair. Our system, ERD-MedLDA, adapts Maximum Entropy Discriminant Latent Dirichlet Allocation (MedLDA) with mixed membership for relation detection. By using supervision, ERD-MedLDA is able to learn topic distributions indicative of relation types. Further, ERDMedLDA is a topic model that combines the benefits of both, maximum likelihood estimation (MLE) and maximum margin estimation (MME), and the mixed-membership formulation enables the system to incorporate heterogeneous features. We incorporate different features into the system and perform experiments on the ACE 2005 corpus. Our approach achieves better overall performance for precision, recall, and F-measure metrics as compared to baseline SVM-based and LDA-based models. We also find that our system shows better and consistent improvements with the addition of complex informative features as compared to baseline systems.
منابع مشابه
A Combination of Topic Models with Max-margin Learning for Relation Detection
This paper proposes a novel application of a supervised topic model to do entity relation detection (ERD). We adapt Maximum Entropy Discriminant Latent Dirichlet Allocation (MEDLDA) with mixed membership for relation detection. The ERD task is reformulated to fit into the topic modeling framework. Our approach combines the benefits of both, maximum-likelihood estimation (MLE) and max-margin est...
متن کاملMedLDA: maximum margin supervised topic models
A supervised topic model can use side information such as ratings or labels associated with documents or images to discover more predictive low dimensional topical representations of the data. However, existing supervised topic models predominantly employ likelihood-driven objective functions for learning and inference, leaving the popular and potentially powerful max-margin principle unexploit...
متن کاملMonte Carlo Methods for Maximum Margin Supervised Topic Models
An effective strategy to exploit the supervising side information for discovering predictive topic representations is to impose discriminative constraints induced by such information on the posterior distributions under a topic model. This strategy has been adopted by a number of supervised topic models, such as MedLDA, which employs max-margin posterior constraints. However, unlike the likelih...
متن کاملMMH: Maximum Margin Supervised Harmoniums
Exponential family Harmoniums (EFH) are undirected topic models that enjoy nice properties such as fast inference compared to directed topic models. Supervised EFHs can utilize documents’ side information for discovering predictive latent topic representations. However, existing likelihood based estimation does not yield conclusive results. This paper presents a max-margin approach to learning ...
متن کاملMax-margin Latent Dirichlet Allocation for Image Classification and Annotation
Much work in image classification and labeling uses topic models (e.g. LDA [1]), which are a class of powerful tools originally proposed in text modeling and have gained much popularity in computer vision recently. Despite the success of topic models in visual recognition, we believe there are some limitations of the way that topic models are used in computer vision. First of all, most topic mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Natural Language Engineering
دوره 18 شماره
صفحات -
تاریخ انتشار 2012